Whole animals and plants can be imaged as well as blots, gels, micro-plates, cell culture dishes and arrays regardless luminescent or fluorescent markers are used.

Luminescence as a Tool to Monitor Bacterial Growth

Analysis of Promoter Activity

Foulston et al. (2011). Feed-Forward Regulation of Microbisporicin Biosynthesis in Microbispora coralline. *J Bacteriol* 193 (12), 3064-3071 [Read more]

Bioluminescence and Biofluorescence Imaging to Monitor Tumor Growth and Marked Cells in Mice and Rats

David et al. (2011). In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. *Intern J of Pharmaceutics* 423 (1), 108-115 [Read more]

Fradet et al. (2011). Dual Function of ERRα in Breast Cancer and Bone Metastasis Formation: Implication of VEGF and Osteoprotegerin. *Cancer Res* 71 (17), 5728-38 [Read more]

Fan et al. (2012). *In vivo* treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. *Biomaterials* 33 (5), 1428-1436 [Read more]

Bioluminescence Imaging of Parasites in Mice and Rats

Feeding Experiments in Mice and Rats

Measurement of Quantum Dots

Quantitation of Bioluminescence

Pesnel et al. (2011). Quantitation in Bioluminescence Imaging by Correction of Tissue Absorption for Experimental Oncology. Molecular Imaging and Biology 13 (4), 646-652 Read more

Some techniques for generating and/or detecting light in biological subjects are patented and may require licences from third parties. Users are advised to independently determine for themselves whether their activities infringe any valid patent.